TUTORIAL 5

October 24, 2024

1 Basic Linear Algebra Review

For your review, here are some basic linear algebra contents necessary for you to survive in

this course.

Definition 1.1. Let A € C"*", its adjoint A* is defined by
A% =T

A is self adjoint / Hermitian if A = A*, A is normal if AA* = A*A, and A is
unitary if AA* =1

Definition 1.2. Given a matrix A € C"*™. its characteristic polynomial is ps(\) =
det(A—AI). The roots X of the characteristic polynomial are called the eigenvalues
of A and the set of all eigenvalues are called spectrum of A and denoted by o(A).
The maximum modulus of the eigenvalues is called spectral radius and is denoted

by p(A)

A) = A
p(A) AE%?’,?‘)' |




Proposition 1.3. (Eigen Decomposition)

1. A € C"*"™ is normal if and only if there exists a unitary matrix U and a

complex valued diagonal matrix A such that A = UAU*

2. A e C"*" is self-adjoint if and only if there exists a unitary matrix U and a
real valued diagonal matrix A such that A = UAU*

3. A e C™" is unitary if and only if there exists a unitary matrix U and a
complex valued diagonal matrix A such that A = UAU* , where each diagonal

element of A is of modulus 1.

Note that each column vector in U is generally complex valued and distinct column
vectors are orthonormal, i.e., {e;,e;» = ele; = §;;. But when the matrix is real
symmetric, the case becomes easier.

A € R™*™ is symmetric if and only if there exists a real orthonormal matrix @ (
QTQ =1 ) and a real valued diagonal matrix D such that A = QDQT.

Eigen Decomposition are not applicable to all matrices but Jordan Decomposition can

apply to all.

Proposition 1.4. (Jordan Block) An m x m upper triangular matrix B(\,m) is
called a Jordan block provided all m diagonal elements are the same eigenvalue A

and all super-diagonal elements are one:

A1 0 - 00
O X1 --- 0 O
BAm)=1]: + @ .o (m x m matrix).
0 0 O 1
0 0 O 0

(Jordan Form) Given an n x n matrix A, a Jordan form J for A is a block diagonal

matrix

J = diag(B()\l, ml), B()\z,mg), cao ,B()\k, mk)),

where B(\;,m;) is a Jordan block corresponding to the eigenvalue \; with size m;.
(Jordan Decomposition) For any A € C™*", there always exists a nonsigular
X € C»*™ and a Jordan form J such that A = XJX !

2 TIterative Method

Given an n x n real matrix A and a real n-vector b, the problem considered here is to find
x € R™ such that Az = b. Most of the methods covered in this chapter involve passing from
one iterate to the next by modifying one or a few components of an approximate vector

solution at a time.



We begin with the decomposition A = D + L + U where D is the diagonal part of A, L

its strict lower part and U its strict upper part.

Definition 2.1. 1. (Jacobi iteration) Dz 1 = (D — A)z, + b
2. (Gauss-Seidel iteration) (D + L)zg41 = —Uxp + b

3. (Successive Over Relaxation iteration)
(D +wl)xgs1 = [—wU + (1 —w)D]xg + wb
Divide both sides by w, we obtain the form presented in the class
1 1
(L + ZD)I’““ = [;D —(D+U)]xr +0

Note that a hidden assumption of this iteration method is that all diagonal

elements must be nonzero

Two core problems we care:

1. whether the iteration method converges for any initial guess?

2. If the iteration converges, what’s its convergence factor?

2.1 Convergence

All above iteration methods introduced above define a sequence of iterates of the form

T4+1 = GIk + f, (1)

in which G is a certain iteration matrix, where G is invertible.

Question 2.1. Given the initial guess xg, show that
eNn=GNzo+(I-G) T -GMf

What’s the sufficient and necessary condition of G for x to converge, and whether

the limit is independent of zy? If converges, does the limit x satisfy that
=Gz + f

and further
Ax =0

From this exercise, we can prove that

Theorem 2.2. Let G be a square matrix such that p(G) < 1. Then I — G is
nonsingular and the iteration converges for any f and z(, with the limit being (I —

G)~1f. Conversely, if the iteration converges for any f and g, then p(G) < 1.




Therefore, a standard workflow to analyze the convergence of an iteration method is
that usually we start with a form like[l} and compute the convergence factor p(G) by eigen-
decomposition. For example, in the Jacobi iteration, G = —D~(L + U), whose eigenvalues
in some cases are easy to compute. If so, you may directly apply this strategy to analyze
the convergence. Besides, we want to know how fast a method converges. What quantity

can be used to measure the convergence speed?

Question 2.2. Assume that the iteration [I| converges, we suppose let z* satisfy

z* = Gx* + f, and denote the error dp = xp — z™*, show that
dp = G*dy
(challenging) Use the Jordan Decomposition to prove that

oG — 1im (Ll

koo [ do]

Therefore, p(G) is called convergence factor and used to measure how fast an iteration

method converges. The smaller the factor is, the faster the method converges.

Question 2.3. Sometimes we can improve the efficiency of iteration schemes by
relazation. Specifically, instead of letting z**1) = Ha®) + v, we let

2D — e 4 v, and then z*+) = w4 (1-— w)w(’“)

where w is a real constant called the relaxation parameter. Note that w = 1 corre-
sponds to the standard ”unrelaxed” iteration. Good choice of w leads to a smaller
spectral radius of the iteration matrix compared with the ”unrelaxed” method. Sup-
pose we know the smallest and largest eigenvalues of H are « and (3, respectively.
Additionally, —1 < a < 8 < 1, what is the optimal w?

2.2 Special cases

However, usually it’s not easy to compute p(G) unless G is of some special form, like
tridiagonal. In the following, we would like to discuss several cases in which we can easily
know whether the certain iteration methods converge without the need to compute p(G).



2.2.1 A is strictly diagonal dominant

Definition 2.3. A matrix A is

1. diagonally dominant by rows (resp. by columns) if

n n
lajil = Y lajil, (resp. laj| = Dllagl) j=1,2,...,n
i#j i

2. strictly diagonally dominant by rows (resp. by columns) if

n n
lagsl > Y lagil,  (vesp. laggl > Y layl) j=1,2,...,n
i#j i#i

An important tool is the Gershgorin Theorem.

Theorem 2.4. (Gershgorin) YA e o(A), 3¢ suchthat |A—au| < > ayl
Jj=1,j#i

Question 2.4. 1. Suppose A is a real symmetric matrix, if A is strictly diagonally
dominant and its diagonal elements are positive, then A is symmetric positive
definite.

2. Suppose A is a real symmetric matrix, if A is diagonally dominant and its

diagonal elements are nonnegative, then A is symmetric positive semi-definite.

3. Using some spectrum-preserving operations, we may find more restrictions on
the eigenvalues of A.

(a) show that VA€ o(4), 3i suchthat [XA—au|< 12'# @il
j=1j#i

(b) SAS™! has the same spectrum as A, so given any posi-
tive numbers d;, find a suitable S and show that sp(4) <

n n
U{ze(C:|z—ai,i|<di 2 dlj|ai,j|}

i=1 j=1,5#1

4. Suppose A is real symmetric and strictly diagonally dominant, show that

p(A™h < (min {az’i - Z, |aij|})_1

J#i

A technique used here is to write the matrix-vector product in the component-wise form.



For example, in the proof of Gershgorin Theorem, a key equality is
n
(A= Gmm)sm = — Z AmjSj
j#m

By some assumptions on ¢;, we can prove the theorem. Using this technique, we can

also prove that

Theorem 2.5. If A is strictly diagonally dominant either by rows or columns, then
the associated Jacobi and Gauss-Seidel iterations converge for any z.

Question 2.5. Define a new norm of a squared matrix by
n
Al = ma Z Iy
Il = s 3 e

Prove that p(A) < | 4],

Question 2.6. This question is going to prove an lower bound of the determinant
of a strictly diagonally dominant matrix. Suppose A is strictly diagonally dominant

matrix,
1. show that the system of linear equations
n
a1 + Z ajjr; =0, ©1=23,...,n
j=2

has a unique solution and the solution x = (z3,...,x,) satisfies that

max {z;} <1
3

2. using the Gauss elimination, show that

. a2 az2n
det(A) = <a11 I Z aleEj) det

Jj=2
Ap2 * " Gpn

3. show that

n

| det(A)] = ] [(laiil = Y lai;])

i=1 J#Ei

Question 2.7. Here is a property of the eigenvector of a strictly diagonally dominant

matrix. Suppose A is a strictly diagonally dominant squared matrix, and « is an

eigenvector of A. Let o = max|u;|, prove that it is impossible that the absolute
3

values of all u;’s are a.




2.2.2 A is symmetric positive definite

Theorem 2.6. (Householder-John) If A and B are real matrices such that both
A and A — B — BT are symmetric positive definite, then the spectral radius of
H = —(A — B)7!B is strictly less than one.

2.2.3 A is irreducible diagonally dominant

2.2.4 A= M — N is a regular splitting

2.3 Successive Over-Relaxation(SOR) method

Let us discuss the iteration method in a component-wise form. What we have after the
k — 1-th iteration?

(k—1)

1. latest updated x; , 1=1,2,...,n

2. residual of each component rz(k) =b;— Y, aijm;k_l)
j=1

Usually, our aim of updating x; is to eliminate the residual induced by xgk_l). The Jacobi

Z(»k) Z(k) is to eliminate the residual b; — > aijx(-k),

method updates all x ;
J#i

in parallel, i.e., x

xgk)aii = bz — Z aijmgk)
J#i
The Gauss-Seidel method updates xgk)

updated only after all x(-k), 7 < i have been updated, and x

J
residual induced by un-updated azgk_l

‘rz(k)aii = bi - Z ai]’l‘;k) — Z aijlékil)

j<i J>i

(k)

component by component, i.e., z;’ can be

(0)
K3

)(j > i) and updated xg-k) (G <),

is to eliminate the

A common characteristic of these two methods is that they don’t explicitly consider the
(k=1)
i

weighted average of xgk

affect of x when updating 2¥). That’s how the SOR method comes. We consider a

i
~Y and the newly updated value by Gauss-Seidel method.

_ 1 _
mz(»k) =(1- w)acgk U4 w;(bi - Z aijxgk) - Z aijxg.k 1)), for i=1,2,...,n

j<i Jj>1



Question 2.8. Let A = D+ L+ U, prove that above updated scheme can be written

as
1 1
(L+=D)z® = [=D — (D + U)]z*V 4 f, for some vector f
w w

and equivalently

2® — (D +wL) ™1 - w)D - wU]a*~V + w(D + wL) b

Define G, = (D + wL)7![(1 — w)D — wU] and f, = w(D + wL)~'b, to analyze the
convergence of SOR method, we need to analyze the p(G,,). Here is a necessary condition

on w for the convergence.

Theorem 2.7. (Kahan) If a;; # 0, for each ¢ = 1,2, ....n, then det(G,,) = (w — 1)"
and p(T,) = |w — 1|. This implies that the SOR method can converge only if
O<w<2.

Two questions naturally arise.
1. When A has some properties, can the range of w be further shrinked?
2. Under what conditions on A, can the above necessary condition be also sufficient?

and here are some answers.

Theorem 2.8. When A is strictly diagonally dominant, SOR method converge
fo<w<1

Note that this is a sufficient condition on w, it doesn’t mean that SOR method
won’t converge if 1 < w < 2, instead, it just told you that if 0 < w < 1, SOR method

must converge.

Theorem 2.9. When A is symmetric positively definite, SOR method converges
if and only if 0 <w < 2.

The proof of theorem 2.9 is based on the Householder-John theorem. Besides, I would
like to remind you one key factor in the above analysis.

Although G, = (D +wL)7![(1 —w)D —wU] is an elegant way to represent the iteration
matrix, it’s more useful to write G, = (I + wD 'L)"![(1 —w)I —wD~'U] in the analysis of
det(G,,) and p(G,,), or equivalently, det(G,, — AI), because det((I + wD~'L) = 1. Next, it
is a very interesting and surprising result of the consistently ordered matrix. And again

its proof heavily depends on this key technique.



Theorem 2.10. First of all, recall the concept of a consistently ordered matrix.
Suppose A = D+ L+ U where L and U are strictly lower and upper triangular part,
respectively, if eigenvalues of aD™'L + %D‘lU (o # 0) are independent of «, then
the matrix is said to be consistently ordered.

Let A be a consistently ordered matrix such that a; # 0 for all i, and let
w # 0. Then if )\ is a nonzero eigenvalue of the SOR iteration matrix G,
any scalar p such that

(A +w—1)? = d?p?

is an eigenvalue of the Jacobi iteration matrix G

To use this theorem, the first step is to check whether A is consistently ordered. If so,

we have two important conclusions.




Question 2.9. Consider an n x n tridiagonal matrix of the form

a -1
-1 a -1
Ta: -1 )
—1
-1 «

where « is a real parameter.
1. Verify that the eigenvalues of T,, are given by
Aj=a—2cos(j0), j=1,...,n,

where
T

n+1’

and that an eigenvector associated with each ); is
q; = [sin(j0),sin(256), . .. ,sin(nj6)]" .

Under what condition on « does this matrix become positive definite?
2. Let a = 2.

(a) Will the Gauss-Seidel iteration converge for this matrix? If so, what will
its convergence factor be?

(b) For which values of w will the SOR iteration converge? and what’s the

optimal value of wp:?
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