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1 Basic Linear Algebra Review

For your review, here are some basic linear algebra contents necessary for you to survive in

this course.

Definition 1.1. Let A P Cnˆn, its adjoint A˚ is defined by

A˚
ij “ Aji

A is self adjoint / Hermitian if A “ A˚, A is normal if AA˚ “ A˚A, and A is

unitary if AA˚ “ I

Definition 1.2. Given a matrix A P Cnˆn. its characteristic polynomial is pApλq “

detpA´λIq. The roots λ of the characteristic polynomial are called the eigenvalues

of A and the set of all eigenvalues are called spectrum of A and denoted by σpAq.

The maximum modulus of the eigenvalues is called spectral radius and is denoted

by ρpAq

ρpAq “ max
λPσpAq

|λ|
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Proposition 1.3. (Eigen Decomposition)

1. A P Cnˆn is normal if and only if there exists a unitary matrix U and a

complex valued diagonal matrix Λ such that A “ UΛU˚

2. A P Cnˆn is self-adjoint if and only if there exists a unitary matrix U and a

real valued diagonal matrix Λ such that A “ UΛU˚

3. A P Cnˆn is unitary if and only if there exists a unitary matrix U and a

complex valued diagonal matrix Λ such that A “ UΛU˚ , where each diagonal

element of Λ is of modulus 1.

Note that each column vector in U is generally complex valued and distinct column

vectors are orthonormal, i.e., xei, ejy “ eTi ej “ δij . But when the matrix is real

symmetric, the case becomes easier.

A P Rnˆn is symmetric if and only if there exists a real orthonormal matrix Q (

QTQ “ I ) and a real valued diagonal matrix D such that A “ QDQT .

Eigen Decomposition are not applicable to all matrices but Jordan Decomposition can

apply to all.

Proposition 1.4. (Jordan Block) An m ˆ m upper triangular matrix Bpλ,mq is

called a Jordan block provided all m diagonal elements are the same eigenvalue λ

and all super-diagonal elements are one:

Bpλ,mq “

¨

˚

˚

˚

˚

˚

˚

˝

λ 1 0 ¨ ¨ ¨ 0 0

0 λ 1 ¨ ¨ ¨ 0 0
...

...
...

. . .
...

...

0 0 0 ¨ ¨ ¨ λ 1

0 0 0 ¨ ¨ ¨ 0 λ

˛

‹

‹

‹

‹

‹

‹

‚

pm ˆ m matrixq.

(Jordan Form) Given an nˆn matrix A, a Jordan form J for A is a block diagonal

matrix

J “ diagpBpλ1,m1q, Bpλ2,m2q, . . . , Bpλk,mkqq,

where Bpλi,miq is a Jordan block corresponding to the eigenvalue λi with size mi.

(Jordan Decomposition) For any A P Cnˆn, there always exists a nonsigular

X P Cnˆn and a Jordan form J such that A “ XJX´1

2 Iterative Method

Given an n ˆ n real matrix A and a real n-vector b, the problem considered here is to find

x P Rn such that Ax “ b. Most of the methods covered in this chapter involve passing from

one iterate to the next by modifying one or a few components of an approximate vector

solution at a time.
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We begin with the decomposition A “ D ` L ` U where D is the diagonal part of A, L

its strict lower part and U its strict upper part.

Definition 2.1. 1. (Jacobi iteration) Dxk`1 “ pD ´ Aqxk ` b

2. (Gauss-Seidel iteration) pD ` Lqxk`1 “ ´Uxk ` b

3. (Successive Over Relaxation iteration)

pD ` ωLqxk`1 “ r´ωU ` p1 ´ ωqDsxk ` ωb

Divide both sides by ω, we obtain the form presented in the class

pL `
1

ω
Dqxk`1 “ r

1

ω
D ´ pD ` Uqsxk ` b

Note that a hidden assumption of this iteration method is that all diagonal

elements must be nonzero

Two core problems we care:

1. whether the iteration method converges for any initial guess?

2. If the iteration converges, what’s its convergence factor?

2.1 Convergence

All above iteration methods introduced above define a sequence of iterates of the form

xk`1 “ Gxk ` f, (1)

in which G is a certain iteration matrix, where G is invertible.

Question 2.1. Given the initial guess x0, show that

xN “ GNx0 ` pI ´ Gq´1pI ´ GN qf

What’s the sufficient and necessary condition of G for xN to converge, and whether

the limit is independent of x0? If converges, does the limit x satisfy that

x “ Gx ` f

and further

Ax “ b

From this exercise, we can prove that

Theorem 2.2. Let G be a square matrix such that ρpGq ă 1. Then I ´ G is

nonsingular and the iteration converges for any f and x0, with the limit being pI ´

Gq´1f . Conversely, if the iteration converges for any f and x0, then ρpGq ă 1.
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Therefore, a standard workflow to analyze the convergence of an iteration method is

that usually we start with a form like 1, and compute the convergence factor ρpGq by eigen-

decomposition. For example, in the Jacobi iteration, G “ ´D´1pL`Uq, whose eigenvalues

in some cases are easy to compute. If so, you may directly apply this strategy to analyze

the convergence. Besides, we want to know how fast a method converges. What quantity

can be used to measure the convergence speed?

Question 2.2. Assume that the iteration 1 converges, we suppose let x˚ satisfy

x˚ “ Gx˚ ` f , and denote the error dk “ xk ´ x˚, show that

dk “ Gkd0

(challenging) Use the Jordan Decomposition to prove that

ρpGq “ lim
kÑ8

p
}dk}

}d0}
q

1
k

Therefore, ρpGq is called convergence factor and used to measure how fast an iteration

method converges. The smaller the factor is, the faster the method converges.

Question 2.3. Sometimes we can improve the efficiency of iteration schemes by

relaxation. Specifically, instead of letting xpk`1q “ Hxpkq ` v, we let

pxpk`1q
“ Hxpkq ` v, and then xpk`1q “ ωpxpk`1q

` p1 ´ ωqxpkq

where ω is a real constant called the relaxation parameter. Note that ω “ 1 corre-

sponds to the standard ”unrelaxed” iteration. Good choice of ω leads to a smaller

spectral radius of the iteration matrix compared with the ”unrelaxed” method. Sup-

pose we know the smallest and largest eigenvalues of H are α and β, respectively.

Additionally, ´1 ă α ă β ă 1, what is the optimal ω?

2.2 Special cases

However, usually it’s not easy to compute ρpGq unless G is of some special form, like

tridiagonal. In the following, we would like to discuss several cases in which we can easily

know whether the certain iteration methods converge without the need to compute ρpGq.
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2.2.1 A is strictly diagonal dominant

Definition 2.3. A matrix A is

1. diagonally dominant by rows (resp. by columns) if

|ajj | ě

n
ÿ

i‰j

|aji|, presp. |ajj | ě

n
ÿ

i‰j

|aij |q j “ 1, 2, . . . , n

2. strictly diagonally dominant by rows (resp. by columns) if

|ajj | ą

n
ÿ

i‰j

|aji|, presp. |ajj | ą

n
ÿ

i‰j

|aij |q j “ 1, 2, . . . , n

An important tool is the Gershgorin Theorem.

Theorem 2.4. (Gershgorin) @λ P σpAq, Di such that |λ ´ aii| ď
n
ř

j“1,j‰i

|aij |

Corollary 2.1. If A is strictly diagonally dominant (either by rows or columns),

then it is non-singular.

Question 2.4. 1. Suppose A is a real symmetric matrix, if A is strictly diagonally

dominant and its diagonal elements are positive, then A is symmetric positive

definite.

2. Suppose A is a real symmetric matrix, if A is diagonally dominant and its

diagonal elements are nonnegative, then A is symmetric positive semi-definite.

3. Using some spectrum-preserving operations, we may find more restrictions on

the eigenvalues of A.

(a) show that @λ P σpAq, Di such that |λ ´ aii| ď
n
ř

j“1,j‰i

|aji|

(b) SAS´1 has the same spectrum as A, so given any posi-

tive numbers dj , find a suitable S and show that sppAq Ď

n
Ť

i“1

#

z P C : |z ´ ai,i| ď di
n
ř

j“1,j‰i

1
dj

|ai,j |

+

4. Suppose A is real symmetric and strictly diagonally dominant, show that

ρpA´1q ď pmin
i

#

aii ´
ÿ

j‰i

|aij |

+

q´1

A technique used here is to write the matrix-vector product in the component-wise form.

5



For example, in the proof of Gershgorin Theorem, a key equality is

pλ ´ ammqςm “ ´

n
ÿ

j‰m

amjςj

By some assumptions on ςj , we can prove the theorem. Using this technique, we can

also prove that

Theorem 2.5. If A is strictly diagonally dominant either by rows or columns, then

the associated Jacobi and Gauss-Seidel iterations converge for any x0.

Question 2.5. Define a new norm of a squared matrix by

}A}8 “ max
1ďiďn

n
ÿ

j“1

|aij |

Prove that ρpAq ď }A}8

Question 2.6. This question is going to prove an lower bound of the determinant

of a strictly diagonally dominant matrix. Suppose A is strictly diagonally dominant

matrix,

1. show that the system of linear equations

ai1 `

n
ÿ

j“2

aijxj “ 0, i “ 2, 3, . . . , n

has a unique solution and the solution x “ px2, . . . , xnq satisfies that

max
i

txiu ď 1

2. using the Gauss elimination, show that

detpAq “

˜

a11 `

n
ÿ

j“2

a1jxj

¸

det

¨

˚

˚

˝

a22 ¨ ¨ ¨ a2n
...
. . .

...

an2 ¨ ¨ ¨ ann

˛

‹

‹

‚

3. show that

|detpAq| ě

n
ź

i“1

p|aii| ´
ÿ

j‰i

|aij |q

Question 2.7. Here is a property of the eigenvector of a strictly diagonally dominant

matrix. Suppose A is a strictly diagonally dominant squared matrix, and u⃗ is an

eigenvector of A. Let α “ max
i

|ui|, prove that it is impossible that the absolute

values of all ui’s are α.
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2.2.2 A is symmetric positive definite

Theorem 2.6. (Householder-John) If A and B are real matrices such that both

A and A ´ B ´ BT are symmetric positive definite, then the spectral radius of

H “ ´pA ´ Bq´1B is strictly less than one.

Corollary 2.2. 1. If A is symmetric positive definite, then the Gauss-Seidel

method converge.

2. If both A and 2D ´A are symmetric positive definite, then the Jacobi method

converge.

2.2.3 A is irreducible diagonally dominant

2.2.4 A “ M ´ N is a regular splitting

2.3 Successive Over-Relaxation(SOR) method

Let us discuss the iteration method in a component-wise form. What we have after the

k ´ 1-th iteration?

1. latest updated x
pk´1q

i , i “ 1, 2, . . . , n

2. residual of each component r
pkq

i “ bi ´
ř

j“1

aijx
pk´1q

j

Usually, our aim of updating xi is to eliminate the residual induced by x
pk´1q

i . The Jacobi

method updates all x
pkq

i in parallel, i.e., x
pkq

i is to eliminate the residual bi ´
ř

j‰i

aijx
pkq

j ,

x
pkq

i aii “ bi ´
ÿ

j‰i

aijx
pkq

j

The Gauss-Seidel method updates x
pkq

i component by component, i.e., x
pkq

i can be

updated only after all x
pkq

j , j ă i have been updated, and x
pkq

i is to eliminate the

residual induced by un-updated x
pk´1q

j pj ě iq and updated x
pkq

j pj ă iq,

x
pkq

i aii “ bi ´
ÿ

jăi

aijx
pkq

j ´
ÿ

jąi

aijx
pk´1q

j

A common characteristic of these two methods is that they don’t explicitly consider the

affect of x
pk´1q

i when updating x
pkq

i . That’s how the SOR method comes. We consider a

weighted average of x
pk´1q

i and the newly updated value by Gauss-Seidel method.

x
pkq

i “ p1 ´ ωqx
pk´1q

i ` ω
1

aii
pbi ´

ÿ

jăi

aijx
pkq

j ´
ÿ

jąi

aijx
pk´1q

j q, for i “ 1, 2, . . . , n
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Question 2.8. Let A “ D`L`U , prove that above updated scheme can be written

as

pL `
1

ω
Dqxpkq “ r

1

ω
D ´ pD ` Uqsxpk´1q ` f, for some vector f

and equivalently

xpkq “ pD ` ωLq´1rp1 ´ ωqD ´ ωU sxpk´1q ` ωpD ` ωLq´1b

Define Gω “ pD ` ωLq´1rp1 ´ ωqD ´ ωU s and fω “ ωpD ` ωLq´1b, to analyze the

convergence of SOR method, we need to analyze the ρpGωq. Here is a necessary condition

on ω for the convergence.

Theorem 2.7. (Kahan) If aii ‰ 0, for each i “ 1, 2, . . . .n, then detpGωq “ pω ´ 1qn

and ρpTωq ě |ω ´ 1|. This implies that the SOR method can converge only if

0 ă ω ă 2.

Two questions naturally arise.

1. When A has some properties, can the range of ω be further shrinked?

2. Under what conditions on A, can the above necessary condition be also sufficient?

and here are some answers.

Theorem 2.8. When A is strictly diagonally dominant, SOR method converge

if 0 ă ω ă 1

Note that this is a sufficient condition on ω, it doesn’t mean that SOR method

won’t converge if 1 ď ω ă 2, instead, it just told you that if 0 ă ω ă 1, SOR method

must converge.

Theorem 2.9. When A is symmetric positively definite, SOR method converges

if and only if 0 ă ω ă 2.

The proof of theorem 2.9 is based on the Householder-John theorem. Besides, I would

like to remind you one key factor in the above analysis.

Although Gω “ pD`ωLq´1rp1´ωqD´ωU s is an elegant way to represent the iteration

matrix, it’s more useful to write Gω “ pI `ωD´1Lq´1rp1´ωqI ´ωD´1U s in the analysis of

detpGωq and ρpGωq, or equivalently, detpGω ´ λIq, because detppI ` ωD´1Lq “ 1. Next, it

is a very interesting and surprising result of the consistently ordered matrix. And again

its proof heavily depends on this key technique.
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Theorem 2.10. First of all, recall the concept of a consistently ordered matrix.

Suppose A “ D`L`U where L and U are strictly lower and upper triangular part,

respectively, if eigenvalues of αD´1L ` 1
αD

´1Upα ‰ 0q are independent of α, then

the matrix is said to be consistently ordered.

Let A be a consistently ordered matrix such that aii ‰ 0 for all i, and let

ω ‰ 0. Then if λ is a nonzero eigenvalue of the SOR iteration matrix Gω,

any scalar µ such that

pλ ` ω ´ 1q2 “ λω2µ2

is an eigenvalue of the Jacobi iteration matrix GJ

To use this theorem, the first step is to check whether A is consistently ordered. If so,

we have two important conclusions.

Corollary 2.3. Suppose A is consistently ordered, we have

1. Let ω “ 1, the SOR method is exactly the Gauss Seidel method. Hence

ρpGGSq “ ρpGJq2 and in such case it is said that Gauss-Seidel method converge

twice faster that Jacobi method.

2. Further if we assume the Jacobi iteration matrix contains only real-valued

eigenvalues, then given a fixed ω P p0, 2q, for each µ P σpGJq, we can obtain

two eigenvalues of Gω, thus

ρpGωq “ fpω,GJq

for some function f . Young’s theorem told us that the optimal ω which results

in the minimal ρpGωq is exactly

ωopt “
2

1 `
a

1 ´ ρpG2
Jq
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Question 2.9. Consider an n ˆ n tridiagonal matrix of the form

Tα “

¨

˚

˚

˚

˚

˚

˚

˚

˝

α ´1

´1 α ´1

´1
. . .

. . .

. . .
. . . ´1

´1 α

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

where α is a real parameter.

1. Verify that the eigenvalues of Tα are given by

λj “ α ´ 2 cospjθq, j “ 1, . . . , n,

where

θ “
π

n ` 1
,

and that an eigenvector associated with each λj is

qj “ rsinpjθq, sinp2jθq, . . . , sinpnjθqs
T
.

Under what condition on α does this matrix become positive definite?

2. Let α “ 2.

(a) Will the Gauss-Seidel iteration converge for this matrix? If so, what will

its convergence factor be?

(b) For which values of ω will the SOR iteration converge? and what’s the

optimal value of ωopt?
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